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DISCRETE FILTERS FOR LARGE EDDY SIMULATION
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SUMMARY

This paper summarizes several results relative to discrete filters for subgrid-scale (SGS) models based on
a multi-level filtering procedure. First, a theoretical study of discrete filters in physical space is performed.
The analysis is done in the uniform one-dimensional case, and is then extended to the general
multi-dimensional case for arbitrary structured and unstructured meshes. Some equivalence classes for
the discrete filters are defined, based either on a differential approximation or the associated transfer
function. Methods for the definition of discrete filters are proposed in the general case, including the
approximation of continuous convolution filters. Second, the sensitivity of several SGS models with
respect to the test filter is investigated. The selected models are: the dynamic Smagorinsky model, the
mixed scale model (MSM), the selective MSM and the Liu–Meneveau–Katz (LMK) similarity model.
Improved versions, which explicitly account for the spectral width of the test filter of the MSM and the
LMK similarity model are proposed. The analysis, which reveals a significant influence of the test filter,
is done through a priori testing on a 1283 field issued from the large eddy simulation (LES) of freely
decaying homogeneous isotropic turbulence. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Large eddy simulation (LES) [1,2] is a promising technique for the unsteady calculation of
complex flows. It is based on the decomposition of the flow in low-frequency resolved modes
and high-frequency unresolved modes (subgrid-scale modes), the latter being parametrized
through the use of a subgrid-scale (SGS) model. This scale separation is achieved by applying
a filter, hereafter referred to as the LES filter, to the Navier–Stokes equation.

The SGS models must represent the unresolved modes on the basis of the information
contained in the simulation, i.e. the resolved modes. Various SGS models have been proposed
and it appears that the most efficient ones are based on the analysis of the resolved modes of
highest frequency. These modes, which constitute the test field, are extracted from the resolved
field through the application of a low-pass filter, referred to as the test filter.

Examples are the turbulent kinetic energy (TKE) model by Bardina et al. [3], which links the
amplitude of the model to the kinetic energy of the test field, and the mixed scale model
(MSM) by Sagaut and Loc (see Reference [4] for a description), which is a generalization of
the TKE and Smagorinsky [5] models. Some improved versions of the original structure
function model of Métais and Lesieur [6] have recently been proposed, which involve the test
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field: the selective structure function model [7], which includes a test on the topology of the
vorticity of the test field, and the filtered structure function model [7,8], which evaluates the
model on the test field. At last, the Germano–Lilly dynamic procedure [9,10], based on the
Germano relationship which links without any approximation of the SGS tensors associated
with different levels of filtering, including its numerous variants [11,12], is now very popular.

Other SGS models, based on the scale similarity hypothesis of Bardina et al. [3], also rely on
a mutli-filtering approach. The original model, which involves several applications of the same
filter (i.e. the LES filter and the test filter are identical), has recently been generalized by Liu
et al. [13] in the case of different cut-off wavenumbers for the two filtering levels, and to the
use of different filters by Shah and Ferziger [14].

Whereas the strong influence of the nature of the LES filter on the interactions between
resolved and subgrid-scales has been demonstrated by theoretical analysis [15] and numerical
experiments [16], the dependency of multi-level SGS models on the test filter remains to be
investigated. Germano et al. [9] indicate that, for the dynamic Smagorinsky model, the optimal
ratio between the cut-off length-scale of the LES filter and the test filter is 2. Najjar and Tafti
[17] recently investigated the dependency of the dynamic procedure on the discrete form of the
test filter used during the simulation, and have demonstrated a strong dependency of the
results, the best results being obtained with the most local wavenumber filters.

Now the problem of the definition of discrete test filters suitable for simulations of industrial
interest appears. Theoretical studies on SGS modelling were carried out considering filtering
operations that are defined as convolution products between the velocity field and the filter
kernel. That definition is suitable when dealing with numerical methods such as spectral or
pseudo-spectral methods, but is very expensive when dealing with local methods (finite
differences, finite volumes, finite elements). In practice, for local methods, discrete test filters
with compact stencils based on weighted averages are used. For example, in the uniform
one-dimensional case, most of the authors consider the two following three-point filters:

f( i=
1
4

(fi−1+2fi+fi+1) or f( i=
1
6

(fi−1+4fi+fi+1).

These two filters are obtained by applying respectively the trapezoidal rule and the Simpson
rule to compute the average of the variable f over the control cell surrounding the point i.

The properties of these discrete filters differ a lot from those of the continuous filters, which
are the basis of theoretical analysis. Hence, the need for the analysis of discrete filters, and for
the definition of discrete filters with required properties in order to ensure a greater consistency
between the continuous SGS model and its discretized version, which will be used for the
computation, appears.

The present paper summarizes results relative to discrete filters for LES, and presents a
general framework for their analysis and classification. It is organized as follows. Section 2
details the general analysis of discrete filters in the uniform one-dimensional case. Associated
continuous differential operators and transfer functions are derived and equivalence classes for
discrete filters are proposed. Two ways of extending it to the multi-dimensional case are given
in Section 3, while the generalization to curvilinear and unstructured meshes is proposed in
Section 4. Several discrete approximation methods for continuous convolution filters are
examined in Section 5. Section 6 is dedicated to the definition of discrete bandpass-like filters.
The dependency of several SGS models on the discrete test filter is investigated in Section 7
through some a priori tests performed on isotropic homogeneous turbulence. Some improved
models are proposed, which account explicitly for the test filter. Conclusions are presented in
Section 8.
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2. DISCRETE FILTERS IN THE UNIFORM ONE-DIMENSIONAL CASE

2.1. Discrete operator and associated transfer function

The filtered field at the ith grid point f( i, obtained by applying a discrete (2N+1)-point filter
F to the variable f, is formally defined as

f( i=Ffi
 %
N

l= −N

alfi+ l, (1)

where the real coefficients ak specify the filter. The preservation of a constant variable is
ensured under the condition

%
N

l= −N

al=1.

The spectral signature of the discrete filter F defined by Equation (1) is characterized by the
associated transfer function F. , which is computed via a von Neumann analysis. Considering
monochromatic waves of the form f(j)=ejkj, with j2= −1, and assuming that the grid is
uniform (Djn
jn+1−jn=Dj), the associated transfer function is

F. (k)= %
N

l= −N

al ejklDj. (2)

Its real part F. Re(k) and the imaginary part F. Im(k) are

F. Re(k)= %
N

l= −N

al cos(klDj), F. Im(k)= %
N

l= −N

al sin(klDj). (3)

2.2. Equi6alent continuous differential operator

The filtering operation associated with the application of the discrete filter (1) can be
interpreted as the application of a differential operator to the continuous field f. Assuming
that the mesh is uniform and that the field f is regular enough, one can introduce the Taylor
series

fi9n= %
�

l=0

(9nDj)l

l !
�( lf

(xl

�
i

. (4)

Substituting that development into relation (1), one obtains

f( i= %
N

n= −N

an %
�

l=0

(nDj)l

l !
�( lf

(xl

�
i

. (5)

This relation can be written as

f( i= %
�

l=0

a*l Dj l�( lf

(xl

�
i

=
�

1+ %
�

l=1

a*l Dj l (
l

(xl

�
fi, (6)

where the coefficients a*l are defined as

a*l =
1
l !

%
N

n= −N

ann
l. (7)
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2.3. Equi6alence classes for discrete filters

Discrete filters can be classified using some equivalence classes, which are arbitrarily defined.
Two classes are proposed in this section: the first one is based on the transfer function concept,
while the second one relies on the equivalent differential operator.

Definition 1
Two filters F and G are equivalent for wavenumber k� if F. (k�)=G. (k�).

Definition 2
Two filters F and G are equivalent to the nth order if a*l =b*l , Öl� [0, . . . , n ], where the
coefficients {a*l } (respectively {b*l }) specify the continuous differential operator associated
with F (respectively G).

3. EXTENSION TO THE MULTI-DIMENSIONAL CASE

For the sake of simplicity, the demonstration will be restricted to the case of the construction
of a multi-dimensional filter on the basis of a unique one-dimensional filter, without any loss
of generality.

A multi-dimensional filter Fp (where p is the dimension of space) can be constructed from
a one-dimensional filter F in two different ways.

3.1. Construction by linear combination

The first method consists in operating a linear combination of one-dimensional filters, each
direction of space being filtered independently of the others. This can be formally written as

Fp=
1
p

%
p

i=1

Fi, (8)

where Fi is the one-dimensional filter defined in the ith space direction. This linear combina-
tion can be interpreted as a simultaneous use of each one-dimensional filter. The stencil of the
resulting discrete p-dimensional filter is the sum of each one-dimensional stencil, and then
contains (2pN+1) points for a (2N+1)-point one-dimensional filter. In the three-dimensional
case, the filtered quantity becomes

f( i, j,k=Fpfi, j,k= %
N

l= −N

al(fi+ l, j,k+fi, j+ l,k+fi, j,k+ l). (9)

The associated transfer function is

F. p(k1, k2, k3)=
1
3

%
N

l= −N

al(e
jk1lDj+ejk2Dj+ejk3Dj). (10)

The equivalent differential operator reads

f( i, j,k=
�

1+ %
�

l=1

a*l
3

Dj l� ( l

(x1
l +
( l

(x2
l +
( l

(x3
l

n�
fi, j,k. (11)
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3.2. Construction by product

The second method consists of defining the multi-dimensional filter Fp as the composition of
some one-dimensional filters applied in each space direction. This can be formalized as follows:

Fp= 5
p

i=1

Fi. (12)

This product is equivalent to a sequential application of the one-dimensional filter, and not to
a simultaneous one as in the previous case. The resulting discrete filter has a (2N+1)3-point
stencil. In the three-dimensional case, the discrete operator reads

f( i, j,k=Fpfi, j,k= %
N

l= −N

%
N

m= −N

%
N

n= −N

alamanfi+ l, j+m,k+n. (13)

The associated transfer function is

F. p(k1, k2, k3)= %
N

l= −N

%
N

m= −N

%
N

n= −N

alaman ejDj(k1l+k2m+k3n). (14)

The corresponding continuous differential operator has the form

f( i, j,k= 5
3

i=1

�
1+ %

�

l=1

a*l Dj l (
l

(xi
l

�
fi, j,k. (15)

It should be noted that the multi-dimensional filters built up using these two methods with the
same one-dimensional filter are not equivalent a priori for an arbitrary order n"0 or a
wavenumber (k1, k2, k3)" (0, 0, 0).

4. EXTENSION TO ARBITRARY MESH

The previous developments are valid for uniform Cartesian meshes. Several ways to extend the
discrete filters on curvilinear structured and unstructured meshes can be considered. Two
methods are proposed in this section, both of which rely on the equivalence classes defined
previously.

The first solution consists of defining a continuous differential operator equivalent up to a
chosen order n to the target filter. This technique is tractable for all mesh topologies, either
structured or unstructured. It only necessitates the definition of the discrete differential
operators that appear in the developments on the computational mesh. As discrete differential
operators are already available in Navier–Stokes solvers, this approach leads to an immediate
approximation of filters. This approach does not enforce the equivalence of the effective
transfer functions because of the discretization errors appearing in the definition of the
elementary discrete differential operators. Jansen [18] proposed a similar solution limited to the
equivalence up to second order on unstructured meshes.

The second solution generates a discrete operator using m points, whose transfer function
will be equivalent for a wavenumber k*= (k*1 , k*2 , k*3 ) to the one of the target filter. In order
to define such an operator for a point of co-ordinates (x0, y0, z0), using m points of
co-ordinates (xl, yl, zl)15 l5m, it is necessary to find the values of the weighting coefficients
{al}05 l5m that appear in the linear combination

f( (x0, y0, z0)= %
m

l=0

alf(xl, yl, zl).
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Defining the relative position of the lth point in the Cartesian basis centered on (x0, y0, z0)
as (Dxl=xl−x0, Dyl=yl−y0, Dzl=zl−z0), the real and imaginary parts of the transfer
function can be written in the following forms:

F. Re(k1, k2, k3)=a0+ %
m

l=1

alcl, F. Im(k1, k2, k3)= %
m

l=1

alsl. (16)

The parameters {cl} and {sl} are defined as

cl=cos(k1Dxl+k2Dyl+k3Dzl), sl=sin(k1Dxl+k2Dyl+k3Dzl).

The coefficients {al} are computed by solving the following linear system:

Í
Ã

Ã

Á

Ä

a0+ %
m

l=1

alcl= f1(k*1, k*2, k*3),

%
m

l=1

alsl= f2(k*1, k*2, k*3),
, (17)

where f1(k*1 , k*2 , k*3 ) and f2(k*1 , k*2 , k*3 ) are arbitrarily fixed. Such a method allows the
definition of a set of coefficients enforcing the equivalence simultaneously for at most m/2
different wavenumbers.

5. DISCRETE APPROXIMATION OF CONVOLUTION FILTERS

5.1. The continuous case

This section is devoted to the discrete approximation of the filtering operation associated in
the continuous case with a convolution filter. The filtered part f( of a function f is classically
defined as

f( (x)=
& +�

−�

G(x−y)f(y) dy, (18)

where the convolution kernel G specifies the filter. The operator defined by relation (18) is a
priori non-local in physical space, and is then worst suited for computations performed with
local numerical methods (finite differences, finite elements, finite volumes). So it is necessary
to define some local discrete approximations for this operator.

5.2. Approximation by polynomial truncation

A first solution is to build a discrete operator in such a way that the associated continuous
differential operator is equivalent up to an arbitrary order to the one of the target filter. To
do that, one has to determine the differential operator associated with the convolution filter
(18). Introducing the Taylor expansion,

f(y)=f(x)+ %
�

l=1

(y−x)l

l !
( lf(x)
(j l , (19)

and inserting it into relation (18) leads to
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LARGE EDDY SIMULATION 1201

f( (x)=f(x)+ %
�

l=1

Ml

l !
( lf(x)
(j l , (20)

where Ml is the moment of order l of the kernel G

Ml=
& +�

−�

G(j)j l dj. (21)

The differential form (20) is well posed if and only if �Ml �B� Öl, meaning that the kernel G
is rapidly decreasing in space. Let D( be the characteristic cut-off length-scale associated with
the LES filter. Two filters are classically used for theoretical developments in LES, which
satisfy that criterion

� the box filter, defined as

G(x−y)=Í
Ã

Ã

Á

Ä

1
D(

0

if �x−y �5D(
2

otherwise.

, (22)

� and the Gaussian filter

G(x−y)=
� g

pD( 2

�1/2

exp
�−g �x−y �2

D( 2

�
. (23)

In practice, the real parameter g is taken equal to 6.
The corresponding differential operators are

� for the box filter

f( (x)=f(x)+
D( 2

24
(2f(x)
(j2 +

D( 4

1920
(4f(x)
(j4 +

D( 6

322560
(6f(x)
(j6 +

D( 8

92897280
(8f(x)
(j8

+O(D( 10), (24)

� for the Gaussian filter

f( (x)=f(x)+
D( 2

24
(2f(x)
(j2 +

D( 4

1152
(4f(x)
(j4 +

D( 6

82944
(6f(x)
(j6 +

D( 8

7962624
(8f(x)
(j8 +O(D( 10).

(25)

These differential approximations correspond to linear elliptic filters [19,20]. The associated
discrete operator equivalent to the nth order of the convolution filter is obtained by
discretizing the differential operators which appear in (24) and (25).

We now illustrate this method on uniform meshes. We introduce the parameter e=D( /Dj,
which represents the ratio of the mesh size Dj to the cut-off lengthscale Dj of the targeted
filter.

In order to ensure that the discretized differential operator will effectively be equivalent up
to the nth order to the target filter, nth-order-accurate centered discrete operators defined on
(n+1)-point stencils are used. By discretizing the differential operators, the following discrete
operators are derived:

� for the box filter
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– operator equivalent to the second-order

f( i=
1
24

e2(fi+1+fi−1)+
1

12
(12−e2)fi, (26)

– operator equivalent to the fourth-order

f( i=
3e4−20e2

5760
(fi+2+fi−2)+

80e2−3e4

1440
(fi+1+fi−1)+

3e2−100e2+960
690

fi.

(27)

� for the Gaussian filter
– operator equivalent to the second-order

f( i=
1
24

e2(fi+1+fi−1)+
1

12
(12−e2)fi, (28)

– operator equivalent to the fourth-order

f( i=
e4−4e2

1152
(fi+2+fi−2)+

16e2−e4

288
(fi+1+fi−1)+

e4−20e2+192
192

fi. (29)

5.3. Optimized approximation

A second way to define the discrete operator is to determine its coefficients in such a way
that the associated transfer function fits as well as possible with those of the target filter.
Whereas the previous method was based on the equivalence up to a given order, the present
one relies on an extension of the equivalence for a given wavenumber. Rather than optimizing
the choice of the (2N+1) coefficients in order to reduce the error for a finite (and small in
practice) set of wavenumbers, it is proposed to minimize the error in a least-square sense over
a continuous band of the spectra. The coefficients {al} will be chosen to minimize the residual
IN, defined as

IN=I(a−N, . . . , a0, . . . , aN)=
& p/D(

0

(G. (k)−G. d(k))2 dk, (30)

where G. (k) and G. d(k) are the transfer functions of the target and the discrete filter
respectively. That approach is very close to the ones used to derived discrete differential
operators by Tam and Web [21]. As an example, the residual corresponding to the 5-point
approximation of the Gaussian filter is

I5=
& p

0

�
e−k2D( 2/24−2

�
a2 cos

�2kD(
e

�
+a1 cos

�kD(
e

�
+

a0

2
�n2

d(kD( ). (31)

It should be noted that the symmetry of the discrete filter (i.e. a−2=a2 and a−1=a1) has been
accounted for in that relation. The coefficients computed by this method for the 3- and 5-point
approximations of the box filter and the Gaussian filter are given in Table I.

5.4. A priori test on a 6on Karman spectrum

The various approximations of the convolution filters are tested and qualified considering an
ideal von Karman spectrum for the turbulent fluctuations u, which is mathematically defined
as

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1195–1220 (1999)
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Table I. Optimized coefficients for the Gaussian filter and box filter

Gaussian filter Box filter

3-point 5-point 3-point 5-point

a1/a0 a1/a0 a2/a0 a1/a0 a1/a0 a2/a0

0.0763 0.0871 −0.0175 0.079e=1 0.0886 −0.0169
e=2 0.2527 0.2596 −0.0021 0.274 0.3178 −0.0130

1.1160 0.4740 0.0785e=3 1.377 1.0237 0.0368
e=4 −3.144 0.1036 0.2611 −2.375 2.4414 0.5559

−1.102 −0.4252 0.3007 −1.000e=5 0.2949 0.7096
−0.809 −0.6134 0.2696e=6 −0.779 −0.5276 0.4437

e=7 −0.696 −0.6679 0.2419 −0.680 −0.6708 0.3302
e=8 −0.638 −0.6836 0.2231 −0.627 −0.7003 0.2767

−0.604 −0.6873 0.2103e=9 −0.596 −0.7077 0.2532
e=10 −0.581 −0.6870 0.2014 −0.575 −0.6996 0.2222

E(k)=
ak4

(b+k2)17/6 . (32)

The selected values for the parameters a and b are 2.682 and 0.417 respectively, so that
max(E(k))=E(1)=1. Let G. (k) be the transfer function of the filter. The kinetic energies E( (k)
and E %(k), associated with ū̂ %(k) and û %(k)= û− ū̂ respectively, are given by

E( (k)=G. 2(k)E(k), E %(k)= (1−G. 2(k))E(k). (33)

One can distinguish two spectral domains: the spectral band V1, which contains the modes k
such that 05k5kc, where kc is the cut-off wavenumber associated with the filter, and the
spectral band V2, which is composed of the modes k such that k\kc.

The values of the contributions of these two bands to the kinetic energies E( and E %
computed using the 3- and 5-point approximations of the box and Gaussian filters are
compared with those obtained using exact continuous filters for two values of the parameter
e in Tables II, III, IV and V. The contribution of V1 to E( was evaluated very accurately in all
cases. The level of the measured error concerning the contribution of the spectral band V2 was
much greater. Increasing the width of the stencil of the discrete filter and using the optimiza-
tion procedure to compute its coefficients lead to a significant decrease of that error. The
contribution of V1 to E % is satisfactorily evaluated, with the exception of non-optimized 3-point
filters, which generate a relative error of the order of 10%. As for E( , the contribution of V2 to
E % suffers a large error in all cases except for 5-point filters with e=3.

Table II. A priori tests on von Karman spectra, Gaussian filter, e=2

E( E %

V2V1 V2 V1

0.0016890.0053103.62018 0.00751Values for continuous filter
−14.316+1.33×10−3 +11.4743-Point filter (error in %) −0.963

5-Point filter (%) +1.33×10−3 +11.474 −0.963 −14.316
−13.045+0.505+9.912−2.92×10−3Optimized 3-point filter (%)

Optimized 5-point filter (%) +6.64×10−4 +7.226 +0.118 −10.421

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1195–1220 (1999)
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Table III. A priori tests on a von Karman spectra, Gaussian filter, e=3

E( E %

V1 V2 V1 V2

3.622018 0.00531 0.001689Values for continuous filter 0.00751
3-Point filter (error in %) −2.242×10−2 −32.897 +14.071 +59.083

+4.393×10−4 +2.933 −0.316 −3.9535-Point filter (%)
+2.183×10−2 −19.37 −3.279 +34.885Optimized 3-point filter (%)

Optimized 5-point filter (%) +1.356×10−1 +1.21 −0.061 −1.903

The error is larger for the box filter than for the Gaussian filter. This can be explained by
the fact that the transfer function associated with the latter is rapidly decreasing and is more
regular than those of the former. It is therefore more easily approximated using fewer degrees
of freedom. The transfer functions are shown in Figures 1 and 2.

For the two considered filters, the use of a 5-point filter in conjunction with the optimization
procedure for the coefficients gives very good results.

The E( (k) and E %(k) spectra corresponding to these various cases are shown in Figures 3–9.
The analysis of these figures confirms that the error is principally localized in the V2 band.

6. DISCRETE BAND-PASS FILTERS

6.1. Definitions

This section is dedicated to the definition of approximate discrete band-pass filters. Such
filters appear when dynamic versions of scale similarity and TKE models are considered, or
when 2-filtering level models are coupled to an explicit prefiltering procedure. The desired
spectral band corresponds to the interval [k %c, kc], with k %c=kc/n, and the associated velocity
field is referred to as ŭ. The developments will be restricted to the case where only one
continuous convolution kernel G is used, without any loss of generality. Two methods are
proposed to define a band-pass filter.

The first one is based on the simultaneous use of the filter at the 2-filtering level, the desired
spectral band being isolated by a simple subtraction. The resulting field is

ŭ̂(k)=G. k %c
(k)û(k)−G. k c

(k)û(k)= (G. k %c
(k)−G. k c

(k))û(k). (34)

The transfer function G." of this band-pass filter is

Table IV. A priori tests on a von Karman spectra, box filter, e=2

E %E(

V1 V2 V1 V2

Values for continuous filter 3.619609 0.00424 0.001854 0.01023
−37.1383-Point filter (error in %) −9.759+47.101+1.718×10−2

+2.707×10−3 +20.5285-Point filter (%) −1.915 −22.443
−29.184−1.659+30.501Optimized 3-point filter (%) −1.799×10−2

Optimized 5-point filter (%) +1.449×10−3 +11.918 −16.588−0.014

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1195–1220 (1999)
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Table V. A priori tests on a von Karman spectra, box filter, e=3

E( E %

V1 V2 V1 V2

3.619609 0.00424 0.001854Values for continuous filter 0.01023
3-Point filter (error in %) −6.495×10−3 −11.452 +3.940 +16.711

−1.464×10−45-Point filter (%) −1.451 +0.165 +2.488
+6.128×10−3 −6.917Optimized 3-point filter (%) −0.535 +11.685

Optimized 5-point filter (%) +8.48×10−5 −0.6733 −0.034 +1.518

G." (k)
G. k %c
(k)−G. k c

(k). (35)

The energy spectra of ŭ̂(k), referred to as E" (k), are

E" (k)=G." 2(k)E(k)= (G. k %c
(k)−G. k c

(k))2E(k). (36)

The second method consists of the sequential use of the filter at the two levels, giving the
following filtered field

ŭ̂(k)=G. k c
(k)û(k)−G. k %c

(k)G. k c
(k)û(k)=G. k c

(k)(1−G. k %c
(k))û(k). (37)

The corresponding transfer function is

G." (k)=G. k c
(k)(1−G. k %c

(k)), (38)

and the resulting energy spectra E" read as

E" (k)=G." 2(k)E(k)=G. k c

2 (k)(1−G. k %c
(k))2E(k). (39)

The transfer functions of the band-pass filters computed using both continuous box and
Gaussian filters and their various discrete approximations are presented in Figures 10–13. Two
cases are considered which correspond to different ratios between the cut-off wavenumber k0

linked to the mesh size Dj and the wavenumber kc. In the first case, the ratio k0/kc is set equal

Figure 1. Comparison between transfer functions of 3- and 5-point approximations of the Gaussian filter and the
exact solution. Exact, —; 3-point, . . . ; 3-point optimized, -·-·-; 5-point, -··-··-; 5-point optimized - - -.
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Figure 2. Comparison between transfer functions of 3- and 5-point approximations of the box filter and the exact
solution. Exact, —; 3-point, . . . ; 3-point optimized, -·-·-; 5-point, -··-··-; 5-point optimized - - -.

to 2, and so k0/k %c=nk0/kc=4, and this case will be referred to hereafter as e=2�4. In the
second case, referred to as e=3�6, we have k0/kc=3 and k0/k %c=6.

One first notices that, in the continuous case, the Gaussian filter leads to the definition of
a strictly positive transfer function, which is monotonotically decreasing for wavenumbers
k\pD( for all the considered building procedures. On the other hand, the transfer function
resulting from the use of the box filter may take some negative values and does not exhibit a
monotonic behavior. Important discrepancies are observed when discrete approximations of
this last filter are considered.

In the case e=2�4, a large overestimation of the contribution of the modes k\pD( is
observed with the 3-point filters. This error is significantly reduced when optimized 5-point
filters are used. In the case of e=3�6 an increase of the maximal error on the transfer function
is noticed for the large wavenumbers.

Figure 3. Left: spectra of the filtered part E( obtained by the application of the box filter and its 3- and 5-point
approximations to a von Karman spectrum, in the e=2 case. Right: enlargement of the k\kc zone. Exact, —;

3-point, . . . ; 5-point, -··-··-.
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Figure 4. Left: spectra of the filtered part E( obtained by the application of the box filter and its 3- and 5-point
approximations to a von Karman spectrum, in the e=3 case. Right: enlargement of the k\kc zone. Exact, —;

3-point, . . . ; 5-point, -··-··-.

6.2. Tests on a 6on Karman spectrum

The proposed discrete band-pass filters are applied to a von Karman spectrum (32). The two
cut-off wavenumbers k %c and kc are taken to be equal to 500 and 1000 respectively, i.e. n=2.
Two values of the parameter e are used in order to assess the two proposed methods for
building band-pass filters. The first one corresponds to the case e=2�4, and the second one to
e=3�6.

The values of the kinetic energy of the computed velocity fields are compared with those
calculated with continuous filters in Table VI for the box filter and in Table VII for the
Gaussian filter. Filtered spectra are presented in Figures 14 and 15.

Filters built through simultaneous applications of discrete filters lead to a much larger level
of discrepancy than those built through a sequential use of the same filters. In the latter case,
the best results are always obtained with the box filter. The use of the optimized 5-point
approximate box filter yields a very strong reduction of the error, the strongest being observed
for e=3�6. The building procedure has a strong influence on the error level, as well as on the
efficiency of the reduction of this error through the use of optimized coefficients and wider
stencils.

Figure 5. Left: spectra of the filtered part E( obtained by the application of the Gaussian filter and its 3- and 5-point
approximations to a von Karman spectrum, in the e=2 case. Right: enlargement of the k\kc zone. Exact, —;

3-point, . . . ; 5-point, -··-··-.
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Figure 6. Left: spectra of the filtered part E( obtained by the application of the Gaussian filter and its 3- and 5-point
approximations to a von Karman spectrum, in the e=3 case. Right: enlargement of the k\kc zone. Exact, —;

3-point, . . . ; 5-point, -··-··-.

7. SENSITIVITY OF THE SGS MODELS

The dependency of several SGS models which rely on the application of a test filter to its
discrete formulation was investigated. The velocity fields obtained by the application LES
filter, which is in practice often linked to the computational grid and the numerical error, are
referred to as ū. That field represents the information contained in the LES. The field
computed by applying a test filter to ū is referred as ũ̄.

7.1. Selected SGS models

7.1.1. Dynamic Smagorinsky model. The first model studied here is the subgrid viscosity-type
model of Smagorinsky, the constant of which is automatically adjusted following the
Germano–Lilly [9,10] dynamic procedure. The resulting model reads

tij−
1
3

tkkdij= −2nSGSS( ij, nSGS=CDD( 2�S( �,, (40)

with

Figure 7. Left: spectra of the fluctuating part E % obtained by the application of the box filter and its 3- and 5-point
approximations to a von Karman spectrum, in the e=2 case. Right: enlargement of the k\kc zone. Exact, —;

3-point, . . . ; 5-point, -··-··-.
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Figure 8. Left: spectra of the fluctuating part E % obtained by the application of the box filter and its 3- and 5-point
approximations to a von Karman spectrum, in the e=3 case (enlargement of the k\kc zone). Right: idem for the

Gaussian filter with e=2. Exact, —; 3-point, . . . ; 5-point, -··-··-.

CD=
mijLij

mlkmlk

, (41)

where tensors mij and Lij are defined as

Lij=
�
ū iūj− ũ̄iũ̄j, (42)

mij= −2D(0 2�S(0 �S(0 ij+2D( 2��S( �S( ij. (43)

7.1.2. MSM and modified MSM. The MSM, proposed by Sagaut [4], accounts for the
contribution of the resolved field gradients, of the kinetic energy of the highest resolved modes
and the cut-off length-scale D( .

The subgrid viscosity is defined as

nSGS=CM �S( �1/2(q c
2)1/4D( 3/2, (44)

where q c
2=1

2ū %iū %i is the kinetic energy of the test field ū %= ū− ũ̄. The value of the constant CM

computed using the EDQNM closure is 0.08.
Considering the ideal case, where the grid and test filters respectively associated with the

wavenumbers kc and k %c are sharp Fourier filters and where the inertial range of the spectra is
infinite, the quantity q2

c may be easily linked to the SGS kinetic energy ESGS

Figure 9. Spectra of the fluctuating part E % obtained by the application of the Gaussian filter and its 3- and 5-point
approximations to a von Karman spectrum, in the e=3 case (enlargement of the k\kc zone). Exact, —; 3-point, . . . ;

5-point, -··-··-.
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Figure 10. Transfer functions of band-pass filters defined using the box filter and its discrete approximations for
e=2�4. Left: simultaneous filtering; right: sequential filtering. Exact, —; 3-point, . . . ; 5-point, -··-··-.

q c
2 & kc

k %c

K0e
2/3k−5/3 dk, ESGS=

&�
k c

K0e
2/3k−5/3 dk, (45)

where K0 and e are respectively the Kolmogorov constant and the kinetic energy dissipation
rate. Simple calculations lead to

q c
2=b(k %c, kc)ESGS, b(k %c, kc)=

��k %c
kc

�−2/3

−1
n

. (46)

To account for this relationship, the basic MSM (44) is modified as

nSGS=CM �S( �1/2(q c
2)1/4D( 3/2b(k %c, kc)−1/4. (47)

Figure 11. Transfer functions of band-pass filters defined using the Gaussian filter and its discrete approximations for
e=2�4. Left: simultaneous filtering; right: sequential filtering. Exact, —; 3-point, . . . ; 5-point, -··-··-.
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Figure 12. Transfer functions of band-pass filters defined using the box filter and its discrete approximations for
e=3�6. Left: simultaneous filtering; right: sequential filtering. Exact, —; 3-point, . . . ; 5-point, -··-··-.

This new improved formulation allows one to account explicitly for the cut-off wavenumber of
the test filter, resulting in a better adaptation of the model to the local state of the resolved
field. One can notice that both quantities q2

c and ESGS are equal if k %c=kc/
8.

7.1.3. Selecti6e MSM. In order to provide a better capturing of the large-scale intermittency,
David (see [7,22]) proposed a structural sensor based on the evaluation of the local angular
fluctuation u of the rotational of the test field v) %, which allows the SGS model to vanish when
the three-dimensional features of the highest resolved frequencies do not correspond to the
phenomenology of developed isotropic homogeneous turbulence.

If the angle u is smaller than a threshold angle u0, one will assume that all the dynamically
active scales are captured by the simulation and the SGS model will be set to zero. The
selective MSM is obtained by multiplying the MSM by the selection function fu 0

(u)

Figure 13. Transfer functions of band-pass filters defined using the Gaussian filter and its discrete approximations for
e=3�6. Left: simultaneous filtering; right: sequential filtering. Exact, —; 3-point, . . . ; 5-point, -··-··-.
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Table VI. Errors between the kinetic energy of the field computed using the discrete band-pass
box filter and the corresponding continuous filter

e=2�4 e=3�6

Simultaneous Sequential Simultaneous Sequential

0.010145 0.010832 0.01049Exact value 0.01095
Error in %:

+353.03 +123.14 +1591.78 +330.53-Point filter
+277.49 +83.51Optimized 3-point filter +1317.6 +249.25
+34.01 +13.70 +546.355-Point filter +4.38
+25.77 +8.68Optimized 5-point filter +466.39 +2.79

nSGS=C %M �S( �1/2(q c
2)1/4D( 3/2fu 0

(u), (48)

with

fu 0
(u)=

!1
0

if u\u0

otherwise
. (49)

Following David, the constant is evaluated as C %M=1.65×CM, and the threshold angle u0 is
taken to be equal to 20°.

7.1.4. Liu–Mene6eau–Katz similarity model and modified Liu–Mene6eau–Katz model. The
similarity SGS models are based on the hypothesis that the statistical structure of a turbulent
field is slowly and continuously varying in frequency, and approximate the subgrid stress
tensor tij via an extrapolation in frequency. That hypothesis, which has been assessed by
experiments, is justified by the non-locality of vortical structures on a Fourier basis [13].
Following the original idea of Bardina et al. [3], Liu et al. [13] propose the new Liu–Mene-
veau–Katz (LMK) similarity model

tij=CL(
�
ū iūj− ũ̄iũ̄j)=CLLij, (50)

where CL=0.4590.15. Like the basic version of the MSM, this model does not depend
explicitly on the cut-off frequencies associated with the grid and test filter. We propose here an
improvement of the LMK model, derived in the same spirit as for the MSM, in order to ensure
that the trace of the parametrized SGS tensor will be equal to the SGS kinetic energy, using
the same hypotheses as previously. We have

Table VII. Errors between the kinetic energy of the field computed using the discrete band-pass
Gaussian filter and the corresponding continuous filter

e=2�4 e=3�6

Simultaneous SequentialSequential Simultaneous

0.006180.008830.006412Exact value 0.00890
Error in %:

+429.67+2639.25+616.833-Point filter +173.54
Optimized 3-point filter +421.89 +115.152 +1902.5 +224.28

+87.35−18.64 −25.565-Point filter +7863.8
+23.62−23.47Optimized 5-point filter −17.61 +4918.2
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Table VIII. Averaged values of the dynamic constant, the SGS viscosity and the SGS dissipation
computed with the dynamic model

e=2 e=3

�nSGS� cd ��DSGS�� �nSGS� cd ��DSGS��

2.322×10−4 1.188×10−2 2.382×10−23-Point filter 2.065×10−4 1.056×10−2 2.118×10−2

Gaussian 5- 1.530×10−4 7.829×10−3 1.570×10−2 1.083×10−4 5.541×10−3 1.111×10−2

point filter
Box 5-point 1.545×10−4 7.902×10−3 1.584×10−2 1.099×10−4 5.624×10−3 1.128×10−2

filter
1.965×10−2Gaussian op- 2.341×10−4 1.197×10−2 2.401×10−2 1.915×10−4 9.699×10−3

timized 3-
point filter

2.077×10−2Box opti- 2.467×10−4 1.262×10−2 2.531×10−2 2.025×10−4 1.036×10−2

mized 3-
point filter

Gaussian op- 1.1108×10−21.529×10−4 7.821×10−3 1.568×10−2 1.083×10−4 5.539×10−3

timized 5-
point filter

1.127×10−2Box opti- 1.512×10−4 7.886×10−3 1.581×10−2 1.127×10−4 5.623×10−3

mized 5-
point filter

Lkk= ū %iū %i=2q c
2=2

& kc

k %c

K0e
2/3k−5/3 dk=2b(k %c, kc)ESGS. (51)

An improved version of the model (50) is

tij=CLLij, CL=
1

2b(k %c, kc)
. (52)

One may remark that in the case of b(k %c, kc)=1 the computed value of the constant CL is very
close to the empirical initial value.

7.2. A priori tests

The dependency of the SGS models to the test filter is now investigated through some a
priori tests which were carried out using the same velocity field u issued from an LES of
isotropic homogeneous turbulence on a 1283 grid [E. Garnier, private communication]. The
cut-off length scale of the LES filter is classically associated with the mesh size of the
computational grid D( =Dj, and the cut-off length scale of the test filter is then specified by
choosing the value of the parameter e. It should be noted that the exact nature of the LES
filter remains unknown.

Fourteen different cases are considered for each SGS model, which correspond to various 3-
and 5-point approximations of both Gaussian and box filters, for e=2 and e=3.

The mean values, computed from the 1283 samples, of the dynamic constant, the associated
SGS viscosity nSGS and SGS dissipation DSGS, defined as

DSGS= −tijS( ij, (53)

are presented in Table VIII. One observes that the use of 5-point filters leads to a large
reduction of the computed value of the dynamic constant, inducing a similar decrease of the
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mean SGS dissipation �DSGS�. The values of the three parameters exhibit a larger dispersion
with e=3 than with e=2, the smallest dissipation being found in the former case. For all the
cases, the use of the optimization procedure to compute the coefficients of the discrete filter
produces only a weak decrease of the dissipation.

The averaged values of the kinetic energy of the test field, the SGS viscosity, and the SGS
dissipation computed using the MSM are given in Table IX. The SGS viscosity and dissipation
for the MSM model are approximately ten times larger than for the dynamic model. One
remarks that the relative dispersion is lower than for the dynamic model. However, as in the
previous case, the dissipation computed with 5-point filters is smaller than with 3-point filters.
On the other hand, the dissipation is higher for e=3 than for e=2. This can be explained by
the fact that the test field contains more kinetic energy because its spectral support is wider,
inducing an increase of the SGS viscosity.

Results obtained with the modified MSM are presented in Table X. The modification has
the desired effect: the discrepancies between the two cases e=2 and e=3 are smaller than for
the original model. The trends are the same as for the previous cases: the use of discrete test
filters which are more local in spectral space yields a decrease of the energy transfer from
resolved scales towards subgrid scales. It should be noted that the improvement is limited,
because the correction factor appears as b−1/4 and not as b−1: the effective power of the
factor concentrates the values around 1. More precisely, the correction factor is equal to 1.142
and 0.980 for e=2 and e=3 respectively.

The results obtained with the selective MSM are shown in Table XI. The selection function,
by reducing the support of the SGS viscosity, leads to a significant decrease of the associated
dissipation. This selection function is very sensitive to the choice for e and the filter, or
equivalently to the structure of the test field. On the one hand, a larger value of e corresponds
to a higher dissipation level than for the basic MSM, but on the other hand, the use of a
5-point filter and optimized coefficients may also lead to an increase of the SGS dissipation.
In the case e=2, the SGS dissipation level is close to the one computed with the dynamic
model.

Table IX. Averaged values of the test field’s kinetic energy, the SGS viscosity and of SGS dissipation
computed with the MSM

e=2 e=3

��DSGS���nSGS��q2
c���DSGS���nSGS��q2

c�

1.369×10−13-Point filter 1.254×10−2 2.048×10−3 1.931×10−13.086×10−3 1.439×10−3

1.432×10−3 1.354×10−1Gaussian 5- 1.077×10−2 1.894×10−3 1.775×10−13.723×10−3

point filter
1.924×10−31.151×10−21.371×10−11.448×10−3 1.803×10−13.912×10−3Box 5-point

filter
3.127×10−3 1.444×10−3 1.374×10−1 1.095×10−2 1.980×10−3Gaussian opti- 1.868×10−1

mized 3-
point filter

Box optimized 3.137×10−3 1.479×10−3 1.406×10−1 1.210×10−2 2.030×10−3 1.914×10−1

3-point filter
1.895×10−31.079×10−21.356×10−1 1.775×10−11.433×10−3Gaussian opti- 3.741×10−3

mized 5-
point filter

Box optimized 3.912×10−3 1.450×10−3 1.803×10−11.373×10−1 1.150×10−2 1.923×10−3

5-point filter

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1195–1220 (1999)



LARGE EDDY SIMULATION 1215

Table X. Averaged values of the test field’s kinetic energy, the SGS viscosity and the SGS dissipation
computed with the modified MSM

e=2 e=3

�q2
c� �nSGS� ��DSGS�� �q2

c� �nSGS� ��DSGS��

3.086×10−3 1.643×10−3 1.563×10−1 1.254×10−23-Point filter 2.009×10−3 1.894×10−1

Gaussian 5- 3.723×10−3 1.635×10−3 1546×10−1 1.077×10−2 1.858×10−3 1.741×10−1

point filter
Box 5-point 3.912×10−3 1.654×10−3 1.566×10−1 1.151×10−2 1.887×10−3 1.768×10−1

filter
1.832×10−1Gaussian opti- 3.127×10−3 1.650×10−3 1569×10−1 1.095×10−2 1.912×10−3

mized 3-
point filter

Box optimized 3.437×10−3 1.689×10−3 1.606×10−1 1.210×10−2 1.991×10−3 1.877×10−1

3-point filter
1.711×10−1Gaussian opti- 3.741×10−3 1.636×10−3 1.519×10−1 1.079×10−2 1.858×10−3

mized 5-
point filter

Box optimized 3.942×10−3 1.656×10−3 1.568×10−1 1.150×10−2 1.886×10−3 1.768×10−1

5-point filter

Mean values of the SGS dissipation computed using the basic and modified LMK similarity
models are given in Table XII. When using the basic model, one notices first that a widening
of the spectral band associated with the test filter induces a large increase of the SGS
dissipation, as observed with the MSM. The dispersion of the values is larger for e=3 than
for e=2, indicating that the model is very sensitive to the transfer function of the discrete test
filter. The use of the 5-point filter and the optimization procedure lead to a decrease of the
SGS dissipation, as in the previous cases. The level of dissipation found with e=2 is similar

Table XI. Averaged values of the test field’s kinetic energy, the SGS viscosity and the SGS dissipation
computed with the selective MSM

e=2 e=3

�q2
c� �nSGS� ��DSGS�� �q2

c� �nSGS� ��DSGS��

3.086×10−3 8.323×10−53-Point filter 7.163×10−3 1.254×10−2 6.966×10−4 6.381×10−2

5.434×10−23.723×10−3 1.503×10−4Gaussian 5- 1.123×10−2 1.077×10−2 5.643×10−4

point filter
6.296×10−41.151×10−21.577×10−2 6.073×10−21.661×10−43.912×10−3Box 5-point

filter
5.813×10−4 5.298×10−23.127×10−3 8.517×10−5 7.331×10−3 1.095×10−2Gaussian opti-

mized 3-
point filter

Box optimized 8.596×10−33.137×10−3 6.075×10−26.643×10−49.952×10−5 1.210×10−2

3-point filter
Gaussian opti- 5.460×10−23.711×10−3 1.526×10−4 1.445×10−2 1.079×10−2 5.670×10−4

mized 5-
point filter

6.060×10−23.942×10−3 1.698×10−4 1.614×10−2Box optimized 1.150×10−2 6.282×10−4

5-point filter
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Table XII. Averaged value of the SGS dissipation ��DSGS�� computed with the LMK and modified
LMK similarity models

LMK Modified LMK

e=2 e=3 e=2 e=3

2.807×10−2 5.345×10−2 2.389×10−23-Point filter 2.474×10−2

2.425×10−2 3.764×10−2 2.064×10−2Gaussian 5-point filter 1.742×10−2

2.490×10−2 3.905×10−2Box 5-point filter 2.119×10−2 1.807×10−2

2.825×10−2 5.050×10−2 2.101×10−2 2.338×10−2Gaussian optimized 3-point filter
2.955×10−2 5.272×10−2Box optimized 3-point filter 2.549×10−2 2.440×10−2

Gaussian optimized 5-point filter 2.433×10−2 3.770×10−2 2.070×10−2 1.745×10−2

2.503×10−2 3.902×10−2 2.130×10−2 1.806×10−2Box optimized 5-point filter

to the one computed with the dynamic model. An important effect of the proposed modifica-
tion is observed: the level of discrepancy between the e=2 and e=3 cases is reduced, and the
SGS dissipation is smaller in the latter case. Here, a wider test spectral band is associated with
a smaller amplitude of the SGS terms, as for the dynamic model. The level of dissipation level
is very close to the one computed with the dynamic model for the two selected values of e. The
reduction is larger when 5-point filters are used. The improvement is more significant than the
one noticed for the MSM, because the correction factor now appears as b−1.

The observed decrease of the SGS dissipation when using a 5-point filter and optimized
coefficients results from the reduction of the error incurred by the transfer function concerning
the contribution of the low frequencies to the test field. A better spectral localization of the test
field renders the SGS models more sensitive to the local state of the flow and allows for
accounting of the large-scale intermittency in a better way. It induces a reduction of the
support of the SGS models and the associated dissipation, or in an equivalent manner to an
increase of the SGS dissipation intermittency. The proposed modifications of the MSM and
LMK models, based on the normalization of the trace of the SGS tensor, lead to the definition
of improved models which are less sensitive to the spectral width of the test filter. The present
tests show that the dynamic procedure partially reduces the dependency on the test filter.
Figures 16–19 show the iso-values of the SGS dissipation DSGS computed with the dynamic
model using discrete approximations of the Gaussian filter. The increase of the SGS

Figure 14. Energy spectrum of the field obtained by applying a band-pass filter based on the box filter to a von
Karman spectrum in the e=3 case. Left: simultaneous filtering; right: sequential filtering. Exact, —; 3-point, . . . ;

5-point, -··-··-.
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Figure 15. Energy spectrum of the field obtained by applying a band-pass filter based on the Gaussian filter to a von
Karman spectrum, in the e=3 case. Left: simultaneous filtering; right: sequential filtering. Exact, —; 3-point, . . . ;

5-point, -··-··-.

intermittency due to better spectral properties of the discrete test filter is observed when
comparing these figures. One can notice that 3-point filters lead to similar results for the two
values of e, whereas a 5-point filter produces a clear reduction of the support of the
dissipation.

8. CONCLUSIONS

The general form of the discrete filter in the uniform one-dimensional case has been derived
and analyzed, as well as the associated transfer function and continuous equivalent differential
operator. Equivalence classes for the discrete filters have been proposed: the first one relies on
the equality of the transfer function for a given wavenumber, and the second one on the

Figure 16. Iso-value contours of the SGS dissipation in a plane, computed with the dynamic model, using a discrete
3-point Gaussian test filter, standard coefficients, with e=2.
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Figure 17. Iso-value contours of the SGS dissipation in a plane, computed with the dynamic model, using a discrete
5-point Gaussian test filter, optimized coefficients, with e=2.

equivalence up to a given order of the associated differential operators. Several methods to
extend discrete filters to the multi-dimensional case, based on the equivalence class concept, are
proposed. The generalization to curvilinear structured and unstructured meshes is also
discussed.

Figure 18. Iso-value contours of the SGS dissipation in a plane, computed with the dynamic model, using a discrete
3-point Gaussian test filter, standard coefficients, with e=3.
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Figure 19. Iso-value contours of the SGS dissipation in a plane. computed with the dynamic model, using a discrete
5-point Gaussian test filter, optimized coefficients, with e=3.

Discrete approximations of convolution filters, which best fit to the continuous filter in a
given sense, are detailed. Discrete operators corresponding to the Gaussian and box filters are
given and tested on a von Karman spectrum. The tests demonstrate the efficiency of the
proposed optimization procedure to compute the coefficients of the discrete filter. The use of
5-point filters leads to a clear improvement in results over the 3-point filters.

The defined discrete filters are then used as a basic tool to build up some band-pass filters.
Two methods are proposed: the first one consists of a sequential application of the filters, and
the second one consists of a simultaneous use of the discrete filters. A priori tests on a von
Karman spectrum show that the former produces the most accurate results, the best accuracy
being obtained using discrete approximations of the box filter.

Finally, the dependency of SGS models has been tested through a priori testing on a velocity
field issued from the large-eddy simulation of isotropic homogeneous turbulence on a 1283

grid. Several models are considered: the dynamic model, the MSM and its selective variant,
and the LMK similarity model. Improved versions of the MSM and the LMK model are
proposed, which account for the spectral width of the test filter. All the models exhibit a
sensitivity on the discrete test filter. This sensitivity is less pronounced for models which have
a self-adjustment capability, like the dynamic model and the proposed improved LMK and
MSM models. The smallest dissipation levels are achieved when using discrete filters which
have the most local transfer functions, in accordance with the previous results of Najjar and
Tafti [17]. These filters minimize the error induced on the low frequencies contribution to the
test field. The most efficient filters are 5-point filters whose coefficients are computed using the
proposed optimization procedure.
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6. O. Métais and M. Lesieur, ‘Spectral large-eddy simulation of isotropic and stably stratified turbulence’, J. Fluid

Mech., 239, 157–194 (1992).
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